МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г. ШУХОВА» (БГТУ им. В.Г.Шухова)

Согласовано	Утверждено
Начальник отдела магистратуры	Проректор по учебной работе
И.В. Ярмоленко	В.М. Поляков

ПРОГРАММА

вступительного испытания для поступающих в магистратуру по направлению 13.04.02 – Электроэнергетика и электротехника

программа – Электропривод и автоматика механизмов и технологических комплексов

Институт: энергетический

Выпускающая кафедра: электроэнергетики и автоматики

Программа составлена на основе ФГОС ВПО по направлению подготовки 13.04.02 –
«Электроэнергетика и электротехника» (уровень магистратуры), утвержденного приказом
Минобрнауки от 21.11.2014 г. № 1500 и содержит перечень вопросов по дисциплинам
базовой части профессионального цикла подготовки бакалавров, содержащихся в задании
вступительного испытания в магистратуру по направлению 13.04.02 – «Электроэнергетика
и электротехника» магистерской программы - «Электропривод и автоматика механизмов
и технологических комплексов».

Составитель:			М.А. Авербух
Программа рассмотрена и рекомендована к кафедры протокол № 4 от «27» февраля 2015 г.	: изданию на	заседании	выпускающей
Руководитель ООП магистратуры			М.А. Авербух
Зав. кафедрой			А.В. Белоусов

1. СОСТАВ УЧЕБНЫХ ДИСЦИПЛИН, ВКЛЮЧЕННЫХ В ПРОГРАММУ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ В МАГИСТРАТУРУ

- 1.1. Теоретические основы электротехники;
- 1.2. Электрические машины;
- 1.3. Теория автоматического управления;
- 1.4. Электрический привод;
- 1.5. Электрические и электронные аппараты;
- 1.6. Общая энергетика;
- 1.7. Электроника.

2. СОДЕРЖАНИЕ УЧЕБНЫХ ДИСЦИПЛИН

2.1. Теоретические основы электротехники

- Схемы электрической цепи. Условно-графические обозначения элементов.
- Связь между током и напряжением в основных элементах электрической цепи.
- Расчет сложных электрических цепей. Метод контурных токов и узловых напряжений.
- Расчет разветвленных электрических цепей методом наложения и эквивалентного генератора.
- Электрические цепи переменного синусоидального тока. Получение синусоидальной ЭДС. Действующие и средние значения ЭС, напряжений и токов. Векторные диаграммы.
- Установившийся режим в цепи с последовательным соединением элементов R, L и
 С. Мощность в цепи переменного синусоидального тока.
- Расчет электрических цепей переменного синусоидального тока комплексным методом. Резонанс в электрических цепях.
- Электрические цепи переменного трехфазного тока. Достоинства. Способы соединения. Фазные и линейные токи и напряжения.
- Расчет трехфазной цепи при соединении звездой и треугольником. Обрыв фазы и нейтрали.
- Переходные процессы в электрической цепи, состоящей из последовательно соединенных элементов R, L и C.
- Переходные процессы в электрической цепи, состоящей из последовательно соединенных элементов R и L.
- Переходные процессы в электрической цепи, состоящей из последовательно соединенных элементов R и C.
- Расчет переходных процессов в электрических цепях переменного синусоидального тока операторным методом.
- Расчет электрических цепей при несинусоидальных периодических ЭДС, напряжений и токов. Разложение в ряд Фурье.

2.2. Электрические машины

- Однофазные и трехфазные трансформаторы. Устройство и принцип действия.
- Режимы работы трансформаторов. Векторные диаграммы и внешние характеристики

- трансформаторов.
- Автотрансформаторы. Трансформаторы тока. Особенности и принцип действия.
- Схема замещения и основные уравнения состояния трансформатора.
- Устройство и принцип действия машины постоянного тока (двигатель, генератор).
- ЭДС и электромагнитный момент машины постоянного тока. Реакция якоря и способы устранения. Коммутация в машинах постоянного тока.
- Генератор постоянного тока с независимым, последовательным, параллельным и смешанным возбуждением. Основные характеристики.
- Пуск и торможение двигателя постоянного тока. Способы регулирования частоты вращения.
- Асинхронные машины переменного тока. Принцип действия, конструкция и режимы работы.
- Вращающий момент и характеристики асинхронного двигателя. Схемы замещения и векторные диаграммы.
- Пуск и торможение асинхронного двигателя. Способы регулирования частоты вращения.
- Синхронные электрические машины. Назначение и области применения. Устройство и принцип работы.
- Характеристики синхронного двигателя: U-образная и угловая. Схема замещения и векторная диаграмма фазы синхронного двигателя.

2.3. Теория автоматического управления

- Уравнение движение системы, методика его получения. Формы представления моделей, объектов и САУ (систем автоматического управления).
- Временные и частотные характеристики объектов и САУ (систем автоматического управления).
- Усилительное и апериодическое элементарные динамические звенья, их временные и частотные характеристики.
- Интегрирующее и дифференцирующее элементарные динамические звенья, их временные и частотные характеристики.
- Форсирующие элементарные динамические звенья, их временные и частотные характеристики.
- Колебательное элементарное динамическое звено, его временные и частотные характеристики.
- Последовательное, параллельное и встречно-параллельное соединения звеньев.
 Частотные характеристики соединений.
- Устойчивость линейных систем по Ляпунову. Временные и частотные критерии устойчивости.
- Показатели качества. Синтез корректирующего устройства методом ЛАЧХ.

2.4. Электрический привод

Понятие электропривода. Электропривод, как средство энерго- и ресурсосбережения. Структурная схема автоматизированного электропривода.

- Приводные характеристики машин и механизмов. Механические характеристики.
 Жесткость механической характеристики. Естественная и искусственная механические характеристики.
- Основные схемы включения ДПТ, их механические и электромеханические характеристики. Основные уравнения.
- Способы регулирования скорости ДПТ с различными способами возбуждения. Пуск и реверс ДПТ.
- Электропривод по системе «управляемый выпрямитель двигатель».
- Электропривод по системе «широтно-импульсный преобразователь двигатель».
- Тормозные режимы работы электропривода постоянного тока.
- Механические и электромеханические характеристики асинхронного двигателя.
- Прямой пуск асинхронного двигателя и пуск с применением тиристорного регулятора напряжения. Динамические и механические характеристики.
- Системы частотного регулирования угловой скорости короткозамкнутого асинхронного двигателя. Законы регулирования скорости в системах ПЧ-АД. Механические характеристики.
- Автономные инверторы тока и напряжения. Схемы силовых цепей.
- Схемы включения и особенности конструкции синхронных двигателей. Пусковая и статическая механические характеристики.
- Электромеханические свойства явнополюсных и неявнополюсных синхронных двигателей. Угловая и механическая характеристики.
- Тормозные режимы работы электропривода с асинхронным двигателем.
 Генераторное торможение. Торможение противовключением. Динамическое торможение.
- Общие положения по выбору электродвигателя. Расчет мощности и предварительный выбор электропривода. Проверка выбранного двигателя по условиям нагрева и перегрузки.

2.5. Электрические и электронные аппараты

- Основные теории электрических аппаратов. Основные понятия. Потери в деталях электрических аппаратов.
- Нагрев и охлаждение однородного проводника во времени при кратковременном, повторно-кратковременном и продолжительном режимах работы.
- Нагрев однородного проводника при коротком замыкании. Нагрев проводника переменного сечения. Нагрев катушек.
- Основы расчета электродинамических сил. Основные понятия. Методы расчета электродинамических сил.
- Физические явления в электрическом контакте. Переходное сопротивление контакта.
 Температура площадки контактирования.
- Основные конструкции контактов. Процесс размыкания и размыкания контактов.
 Износ контактов.
- Процессы в дуговом промежутке. Вольт-амперные характеристики электрической дуги. Условия гашения электрической дуги.
- Виды электромагнитных реле. Классификация и особенности работы.

- Автоматический воздушный выключатель. Устройство и принцип действия.
- Устройство и принцип работы электрического предохранителя. Предохранители для защиты полупроводниковых приборов.

2.6. Общая энергетика

- Типы ТЭС и АЭС. Виды и характеристики топлив, применяемых в электроэнергетике.
- Законы термодинамики. Понятие теплоемкость и энтальпия. Энтропия. Обратимые термодинамические процессы.
- Основные термодинамические процессы идеальных газов. Круговые процессы, термический КПД цикла. Цикл Карно и его термический смысл.
- Виды теплообмена. Количественные характеристики теплообмена.
 Теплопроводность. Основной закон теплопроводности.
- Конвективный теплообмен. Основное уравнение конвективного теплообмена. Естественная и вынужденная конвекция.
- Теплоотдача при кипении жидкости и конденсации. Основное уравнение теплопередачи.
- Газотурбинные и парогазовые установки. Схема парогазовой установки и ее идеальный цикл.
- Классификация котельных агрегатов. Технологическая схема котельной установки.
 Паровые котлы производственных котельных.
- Возобновляемые источники энергии. Солнечные фотоэлектрические установки.
 Ветроэнергетика.

2.7. Электроника

- Электропроводимость полупроводников. Основные характеристики полупроводниковых материалов. Носители заряда в беспримесных и примесных полупроводниках.
- Прямое и обратное смещение p-n перехода. Статическая характеристика, принцип работы, особенности поведения различных полупроводниковых материалов на обратной ветви.
- Биполярный транзистор, принцип действия и статические характеристики. Усилитель на биполярном транзисторе (общий эмиттер), схемотехника и расчет.
- Разновидности полупроводниковых диодов, использование диодов в схемотехнике.
- Тиристор, принцип действия, статическая характеристика, временные диаграммы работы.
- Классификация и основные характеристики усилителей. Обратные связи в усилителях (влияние на статические и динамические характеристики).
- Интегрирующие цепи. Временные диаграммы и аналитическое описание.
 Дифференцирующие цепи. Временные диаграммы и аналитическое описание.
- Операционный усилитель, идеальная модель, статическая характеристика, понятие дифференциального и синфазного сигналов.
- Основные функциональные узлы на операционном усилителе. Инвертирующий усилитель, интегратор и сумматор. Схемотехника и расчет.

3. РЕКОМЕНДОВАННАЯ ЛИТЕРАТУРА

3.1. Теоретические основы электротехники

- 1. Нейман Л.Р., Демирчян К.С., Теоретические основы электротехники. М.: Высшая школа. 2005.
- 2. Атабеков Г.И. ТОЭ линейные электрические цепи. 2009
- 3. Бессонов Л.А. ТОЭ электрические цепи, 2002.
- 4. Прянишников В.А. Теоретические основы электротехники, 2004.
- 5. Прасол Д.А., Михайлова М.Ю. Расчет цепей постоянного тока. Белгород: Изд-во БГТУ, 2012.

3.2. Электрические машины

- 1. Гольдберг О.Д., Электромеханика. М.: Академия, 2007.
- 2. Гольдберг О.Д. Проектирование электрических машин. М.: МЭИ, 2009.
- 3. Чунихин А.А. Электрические аппараты. М.: Энергоатомаздат., 2003.
- 4. Виноградов А. А., Соловьёв С. В., Модель электрической системы. Белгород: Издво БГТУ, 2013.

3.3. Теория автоматического управления

- 1. Ротач В.Я. Теория автоматического управления. М.: МЭИ, 2004.
- 2. Бесекерский В.А., Попов Е.П. Теория систем автоматического управления. СПб.: Профессия, 2003.
- 3. Первозванский А.А. Курс теории автоматического управления. СПб.: Лань, 2010.
- 4. Рубанов В.Г. Теория автоматического управления (нелинейные, оптимальные и цифровыесистемы), Белгород: Изд-во БГТУ, 2006.
- 5. Паращук Е.М., Семернин А.Н., Требукова Н.С. Теория автоматического управления. Белгород: Изд-во БГТУ, 2012.
- 6. Дорф Р., Бишоп Р. Современные системы управления. Пер. с англ. Б. И. Копылова. М.: Лаборатория базовых знаний, 2002. 832 с.

3.4. Электрический привод

- 1. Ильинский Н.Ф. Основы электропривода. М.: Изд-во МЭИ, 2003.
- 2. Москаленко В.В. Электрический привод. М.: Академия, 2007.
- 3. Кацман М.М. Электрический привод. М.: Академия, 2005.
- 4. Соколовский Г.Г. Электроприводы переменного тока с частотным регулированием. М.: Академия, 2007.
- 5. Чиликин М.Г., Садлер А.С. Общий курс электропривода. М.: Энергоатомиздат, 1992.

3.5. Электрические и электронные аппараты

- 1. Электрические и электронные аппараты: Учебник для вузов / под редакцией Ю.К. Розанов.-2-е изд., испр. и доп. М.: Информэлектро, 2001. 420 с.
- 2. Родштейн Л.А. Электрические аппараты. Учебник для техникумов. -4-е изд. испр. и доп. –Л. Энергоатомиздат, 1989. 300с.

- 3. Келим Ю.М. Электромеханические и магнитные элементы систем автоматики: учебное пособие.- 2-е изд., испр. и доп..- М.: Высшая школа, 2004.- 351с.
- 4. Подлипенский В.С., Петренко В.Н. Электромагнитные и электромашинные устройства автоматики. К.: Вища Шк., 1987. 592 с.

3.6. Общая энергетика

- 1. Быстрицкий Г.Ф. Основы энергетики: Учебник для вузов. М.:ИНФРА. 2006. 276с
- 2. Быстрицкий Г.Ф. Общая энергетика: Учебное пособие/ Г.Ф.Быстрицкий.- М.: Академия, 2005.- 204 с.
- 3. Основы современной энергетики: В двух частях. Курс лекций для менеджеров энергетических компаний под общ. ред. Е.В.Аметистова. М.: МЭИ, 2003.- 451 с.
- 4. Газотурбинные и парогазовые установки тепловых электростанций: Учебное пособие/ С.В. Цанев, В.Д. Буров, А.И. Ремизов.-М.: МЭИ, 2000.- 573 с.
- 5. Стерман Л.С., Лавыгин В.М., Тишин С.Г. Тепловые и атомные электрические станции. Учебник для вузов.- М.: Энергоиздат, 2000.- 326 с.
- 6. Липов Ю.М., Третьякова Ю.М. Котельные установки и парогенераторы. Учебник для вузов.- Ижевск.: Научно-издательский центр, 2001.
- 7. Экология энергетики: Учебное пособие под ред. В.Я.Путилова.- М.: МЭИ, 2003.-715 с.
- 8. Лисиенко В.Г. Хрестоматия по энергосбережению: справочник в 2-х кн/В.Г. Лисиенко, Я.М. Щелоков, М.Г. Ладыгичев.-М.: Теплоэнергетик, 2003.- 688 с.

3.7. Электроника.

- 1. Забродин Ю. С. Промышленная электроника. М.: Высш. шк., 1982.
- 2. Гусев В. Г. Электроника и микропроцессорная техника. М.: Высш. шк., 2006.
- 3. Прянишников, В. А. Электроника: полн. курс лекций СПб.: КОРОНА принт, 2006.
- 4. Миловзоров, О. В. Электроника. М.: Высш. шк., 2006.
- 5. Пасынков, В. В. Полупроводниковые приборы. СПб. : Лань, 2006.